The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M501367200 | DOI Listing |
Eur J Med Res
December 2024
Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.
Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.
View Article and Find Full Text PDFSci Transl Med
November 2024
Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China.
Nonalcoholic fatty liver disease (NAFLD) has become a common health care burden worldwide. The high heterogeneity of NAFLD remains elusive and impairs outcomes of clinical diagnosis and pharmacotherapy. Several NAFLD classifications have been proposed on the basis of clinical, genetic, alcoholic, or serum metabolic analyses.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, on the other, its circulating form affects bone remodeling, antagonizing osteoblast differentiation and increasing osteoclast activity.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan. Electronic address:
Abnormal vascular smooth muscle cell (VSMC) proliferation and migration play crucial roles in neointimal hyperplasia and restenosis progression in response to stimulation with various inflammatory cytokines, such as platelet-derived growth factor-BB (PDGF-BB) and tumour necrosis factor-α (TNF-α). Hydroxygenkwanin (HGK) exerts remarkable anti-inflammatory, antitumour, antiproliferative and antimigratory effects. The aim of the study was to elucidate the therapeutic effect and regulatory mechanism of HGK on neointimal hyperplasia.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
The phosphoinositide 3-kinase (PI3K)-Akt axis is one of the most frequently activated pathways and is demonstrated as a therapeutic target in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated colorectal cancer (CRC). Targeting the PI3K-Akt pathway has been a challenging undertaking through the decades. Here we unveiled an essential role of E3 ligase SMAD ubiquitylation regulatory factor 1 (Smurf1)-mediated phosphoinositide-dependent protein kinase 1 (PDK1) neddylation in PI3K-Akt signaling and tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!