Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a comprehensive survey of different C-H activation pathways over various kinds of active sites of terminal oxygens [=O] and bridge oxygens [-O-] by using Mo3O9 model systems. This allows us to provide some insights into fundamental issues concerning C-H activation by metal oxo species involved in many heterogeneous, homogeneous, and enzymatic processes. We show that H abstraction is the most feasible reaction pathway for the activation of a C-H bond on molybdenum oxides; and that [=O] is more active than [-O-]. Our calculations also suggest that (2+2) can be an alternative if M=O bond possesses a high polarity, while (5+2) can provide another effective pathway if two M=O bonds are in close proximity. Implications for the related heterogeneous, homogeneous, and enzymatic processes are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0441099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!