The gelsolin gene family encodes a number of higher eukaryotic actin-binding proteins that are thought to function in the cytoplasm by severing, capping, nucleating or bundling actin filaments. Recent evidence, however, suggests that several members of the gelsolin family may have adopted unexpected nuclear functions including a role in regulating transcription. In particular, flightless I, supervillin and gelsolin itself have roles as coactivators for nuclear receptors, despite the fact that their divergence appears to predate the evolutionary appearance of nuclear receptors. Flightless I has been shown to bind both actin and the actin-related BAF53a protein, which are subunits of SWI/SNF-like chromatin remodelling complexes. The primary sequences of some actin-related proteins such as BAF53a exhibit conservation of residues that, in actin itself, are known to interact with gelsolin-related proteins. In summary, there is a growing body of evidence supporting a biological role in the nucleus for actin, Arps and actin-binding proteins and, in particular, the gelsolin family of actin-binding proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.20200 | DOI Listing |
Adv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, Université de Genève, CH-1211 Genève, Switzerland.
regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.
View Article and Find Full Text PDFWound Repair Regen
January 2025
Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.
View Article and Find Full Text PDFPLoS One
January 2025
Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America.
Ischemic stroke causes acute brain calcium phosphate (CaP) deposition, a process involving primarily the injured neurons. Whereas the adverse impact of CaP deposition on the brain structure and function has been recognized, the underlying mechanisms remain poorly understood. This investigation demonstrated that the neuron-expressed, plasma membrane-associated Ca2+-binding proteins annexin (Anx) A2, AnxA5, AnxA6, and AnxA7 contributed to neuronal CaP deposition in the mouse model of ischemic stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!