Peritoneal sclerosis has been induced in rodents in vivo by exposing the membrane to a variety of experimental interventions: asbestos, 0.1% chlorexidine, iron dextran, glucose degradation products, AGE deposits derived from uremia per se, sodium hypochlorite, lypopolysaccharide, low pH, pure water, silica or zymosan. With a few exceptions (pure water, chlorhexidine and low pH), the other substances mentioned operate setting out different degrees of oxidative stress. This short review describes several experimental interventions in rodents, aimed at acute exfoliation or long-term, sustained injury of the mesothelial monolayer performed by means of intraperitoneal injections of different oxidant agents. Acute exfoliation induced by deoxycholate resulted in a depopulated monolayer coincident with immediate alteration of the peritoneal permeability, evidenced by increased urea D/P ratio, higher glucose absorption rate, elevated albumin losses in the effluent and significant reduction of the ultrafiltration rate. In the long term (30 days), these manifestations of membrane failure persisted and coincided with substantial peritoneal sclerosis. Peritoneal sclerosis was also induced by IP injections of 0.125% trypsin and 6.6 mM/L solution of formaldehyde. Using the doughnut rat model of mesothelial regeneration, exposure to 4.25% glucose or 7.5% icodextrin solutions severely hampered repopulation of the monolayer, which was replaced by a thick sheet of fibrous tissue. It is concluded that peritoneal sclerosis derives mostly from sustained oxidative injury to the peritoneal membrane. Loss of the mesothelial monolayer is the first step in the chain of events leading to this complication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/039139880502800204 | DOI Listing |
Int J Mol Sci
January 2025
Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.
View Article and Find Full Text PDFInflammation
January 2025
Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
Objective: This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury.
Methods: , M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis.
Dig Dis Sci
January 2025
Department of Gastroenterology, Istanbul Faculty of Medicine, Istanbul University, Topkapi Mahallesi Millet Caddesi, Istanbul Tip Fakültesi, 34093, Istanbul, Turkey.
Eur J Nucl Med Mol Imaging
January 2025
Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, LMU Munich, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!