The brain-derived neurotrophic factor (BDNF) gene is critical for neuronal function and survival, and is likely to be important in psychiatric disorders. In this study, we used single-nucleotide polymorphism (SNP) discovery, functional analyses, and genetic association studies to better understand the potential role of BDNF sequence variation in behavior. Screening 480 unrelated individuals for SNPs and genotyping was performed in US Caucasian, American Indian, and African American populations. Lifetime DSM-III-R psychiatric diagnoses were assigned and the Tridimensional Personality Questionnaire (TPQ) was administered to measure anxious temperament (harm avoidance (HA)) and novelty seeking (NS). A novel SNP (-281 C>A) in promoter 1 was discovered that had decreased DNA binding in vitro and decreased basal reporter gene activity in transfected rat hippocampal neurons. The frequency of the -281 A allele was 0.03 in a Caucasian sample, but was virtually absent in other populations. Association analyses in a community-based sample showed that individuals with the -281 A allele (13 heterozygotes) had lower TPQ HA (F=4.8, p<0.05). In contrast, the Met 66 allele was associated with increased HA (F=4.1, p=0.02) and was most abundant in individuals with both anxiety disorders and major depression (p<0.05). Among the Val66Val homozygotes, individuals who were -281 CA heterozygotes had significantly lower HA than the -281 CC homozygotes (p<0.01). Our results suggest that in this population, the low activity -281 A allele may be protective against anxiety and psychiatric morbidity, whereas Met 66 may be a risk allele.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1300703DOI Listing

Publication Analysis

Top Keywords

-281 allele
8
bdnf variation
4
variation mood
4
mood disorders
4
disorders novel
4
novel functional
4
functional promoter
4
promoter polymorphism
4
polymorphism val66met
4
val66met associated
4

Similar Publications

: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Background: The regulatory role of the apolipoprotein E (APOE) ε4 allele in the clinical manifestations of spinocerebellar ataxia type 3 (SCA3) remains unclear. This study aimed to evaluate the impact of the APOE ε4 allele on cognitive and motor functions in SCA3 patients.

Methods: This study included 281 unrelated SCA3 patients and 182 controls.

View Article and Find Full Text PDF

Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation.

View Article and Find Full Text PDF

Genetic associations of miRNA variants (miR-10a, miR-30c, miR-181a, miR-499b) with primary ovarian insufficiency in Korean women.

Maturitas

January 2025

Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea. Electronic address:

Objectives: MicroRNAs (miRNAs) are pivotal in post-transcriptionally modulating gene expression in both animals and plants. This study investigates the relationship between microRNA polymorphisms and the occurrence of primary ovarian insufficiency in Korean women. Our hypothesis posits that polymorphisms in microRNAs-specifically miR-10aA > T, miR-30cA > G, miR-181aT > C, and miR-499bA > G-may be linked to primary ovarian insufficiency, influencing the risk of developing the condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!