Calponin is a basic smooth-muscle-specific protein capable of binding to F-actin, tropomyosin and calmodulin in vitro. Using two-dimensional gel electrophoresis, we show that calponin exists as multiple isoelectric variants in avian and mammalian tissues. During chick embryogenesis, one isoform is expressed in gizzard that shows a pI identical to the most basic adult alpha variant; around 10 d after hatching multiple isoforms then appear. SM 22 [Pearlstone, J. R., Weber, M., Lees-Miller, J. P., Carpenter, M. R. & Smillie, L. B. (1987) J. Biol. Chem. 262, 5985-5991], which has sequence-motifs related to calponin, displays a similar isoform pattern during development; one isoform (alpha) is present in the embryo and three in the adult. In living smooth-muscle strips from chicken gizzard and guinea pig taenia coli, labelled with 32PO4, no phosphate incorporation could be detected in any of the calponin or SM 22 isoforms during either contraction or relaxation. From the additional observation that antibodies against phosphoserine also failed to label calponin and SM 22 in two-dimensional gel immunoblots, we conclude that the multiple isoforms do not arise via differential phosphorylation. These results support the claim [Barany, M., Rokolya, A. & Barany, K. (1991) FEBS Lett. 279, 65-68] that calponin phosphorylation is not involved in smooth muscle regulation in vivo, as has been suggested from in vitro studies [Winder, S. J. & Walsh, M. J. (1990) J. Biol. Chem. 265, 10148-10155]. In vitro translation of porcine and chicken smooth-muscle mRNA produced only a single (alpha) isoform of calponin, suggesting that the adult isoforms do not derive from multiple gene products; in the same assay two polypeptides appeared in the position of SM 22, one corresponding to the alpha isoform and a second more basic spot, not observed in tissue samples. Whereas calponin and SM 22 appear synchronously during smooth muscle differentiation in vivo, SM 22 is not fully down-regulated like calponin, metavinculin and heavy-caldesmon in smooth muscle cells in culture, pointing to a differential regulation of expression of the alpha SM 22 isoform during smooth-muscle phenotype modulation in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1992.tb16875.xDOI Listing

Publication Analysis

Top Keywords

smooth muscle
16
alpha isoform
12
calponin
10
calponin isoforms
8
avian mammalian
8
two-dimensional gel
8
multiple isoforms
8
isoform
6
alpha
5
isoforms avian
4

Similar Publications

The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Case report: Multisystemic smooth muscle dysfunction syndrome: a rare genetic cause of infantile interstitial lung disease.

Front Pharmacol

January 2025

Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Multisystemic smooth muscle dysfunction syndrome (MSMDS) is an autosomal dominant disorder caused by mutations in the gene, resulting in variable clinical manifestation and multi-organ dysfunction. Interstitial lung disease (ILD) is a rare phenotype of this condition. We describe a rare infant case of an 8-month-old boy who presented with progressively worsening dyspnea, along with intermittent episodes of respiratory distress and cyanosis since birth.

View Article and Find Full Text PDF

Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!