Motivation: In a wide range of experimental techniques in biology, there is a need for an efficient method to calculate the melting temperature of pairings of two single DNA strands. Avoiding cross-hybridization when choosing primers for the polymerase chain reaction or selecting probes for large-scale DNA assays are examples where the exact determination of melting temperatures is important. Beyond being exact, the method has to be efficient, as these techniques often require the simultaneous calculation of melting temperatures of up to millions of possible pairings. The problem is to simultaneously determine the most stable alignment of two sequences, including potential loops and bulges, and calculate the corresponding melting temperature.
Results: As the melting temperature can be expressed as a fraction in terms of enthalpy and entropy differences of the corresponding annealing reaction, we propose to use a fractional programming algorithm, the Dinkelbach algorithm, to solve the problem. To calculate the required differences of enthalpy and entropy, the Nearest Neighbor model is applied. Using this model, the substeps of the Dinkelbach algorithm in our problem setting turn out to be calculations of alignments which optimize an additive score function. Thus, the usual dynamic programming techniques can be applied. The result is an efficient algorithm to determine melting temperatures of two DNA strands, suitable for large-scale applications such as primer or probe design.
Availability: The software is available for academic purposes from the authors. A web interface is provided at http://www.zaik.uni-koeln.de/bioinformatik/fptm.html
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/bti379 | DOI Listing |
Int J Biol Macromol
January 2025
KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Schlegel Research Institute for Aging, University of Waterloo, 250 Laurelwood Drive, Waterloo, Ontario, N2L 3G1, CANADA.
As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
The immobilization of α-amylase and glucoamylase using a metal-organic framework (enzyme@ZIF-8) was prepared in situ through a one-pot method. The morphology, crystal structure, and molecular characteristics of the free enzyme and enzyme@ZIF-8 were characterized. The enzyme@ZIF-8 exhibited the rhombic dodecahedron morphology, with a decrease in particle size.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble, CS 40220, 38043, France.
Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China.
d-Tagatose, a rare sugar endowed with a low-calorie property, superior taste quality, and probiotic functionality, has garnered significant research attention. However, the prevailing biological production methods relying on β-galactosidase and l-arabinose isomerase face challenges including high cost and suboptimal conversion efficiency. Consequently, it is of great research significance to find efficient alternative routes for d-tagatose synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!