Proteomic analysis of Bacillus anthracis Sterne vegetative cells.

Biochim Biophys Acta

Bioscience Division, Los Alamos National Laboratory, P.O. 1663, Los Alamos, NM 87545, USA.

Published: May 2005

Mass spectrometry and proteomics have found increasing use as tools for the rapid detection of pathogenic bacteria, even when they are in a mixture of non-pathogenic relatives. The success of this technique is greatly augmented by the availability of publicly accessible proteomic databases for specific pathogenic bacteria. To aid proteomic detection analyses for the causative agent of anthrax, we have constructed a comprehensive proteomic catalogue of vegetative Bacillus anthracis Sterne cells using liquid chromatography tandem-mass spectrometry. Proteins were separated by molecular weight or isoelectric point prior to tryptic digestion. Alternatively, the whole protein extract was digested and tryptic peptides were separated by cation exchange chromatography prior to Reverse Phase-LC-MS/MS. The use of three complementary, pre-analytical separation techniques resulted in the identification of 1048 unique proteins, including 694 cytosolic, 153 membrane (including 27 cell wall), and 30 secreted proteins, accounting for 19% of the total predicted proteome. Each identified protein was functionally categorized using the gene attribute database from TIGR CMR. These results provide a large proteomic catalogue of vegetative B. anthracis cells and, coupled with the recent proteomic catalogue of B. anthracis spore proteins, form a thorough summary of proteins expressed in the active and dormant stages of this organism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2005.01.007DOI Listing

Publication Analysis

Top Keywords

proteomic catalogue
12
bacillus anthracis
8
anthracis sterne
8
pathogenic bacteria
8
catalogue vegetative
8
proteomic
6
proteins
5
proteomic analysis
4
analysis bacillus
4
anthracis
4

Similar Publications

Diversity and evolution of tyrosinase enzymes involved in the adhesive systems of mussels and tubeworms.

iScience

December 2024

Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium.

Mussels and tubeworms have evolved similar adhesive systems to cope with the hydrodynamics of intertidal environments. Both secrete adhesive proteins rich in DOPA, a post-translationally modified amino acid playing essential roles in their permanent adhesion. DOPA is produced by the hydroxylation of tyrosine residues by tyrosinase enzymes, which can also oxidize it further into dopaquinone.

View Article and Find Full Text PDF

Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.

View Article and Find Full Text PDF

Background: Animal venom systems are considered as valuable model for investigating the molecular mechanisms underlying phenotypic evolution. Stonefish are the most venomous and dangerous fish because of severe human envenomation and occasionally fatalities, whereas the genomic background of their venom has not been fully explored compared with that in other venomous animals.

Results: In this study, we followed modern venomic pipelines to decode the Synanceia verrucosa venom components.

View Article and Find Full Text PDF

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy.

View Article and Find Full Text PDF

Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!