Response selection often occurs in a context of competition among conflicting responses. According to recent models, the basal ganglia may play an integral role in resolving this competition by focusing the selection and inhibition of responses. We hypothesized that basal ganglia dysfunction produced by Parkinson's disease (PD) disrupts selection among conflicting responses. Using a version of the Eriksen flanker task, we tested the specific prediction that individuals with PD would experience greater response interference when distractors in the visual field activate a response that conflicts with the target response. In addition, we investigated whether greater response interference induced by these distractors could actually reduce normal response time costs in PD when the task required production of the response opposite the target. Compared to 16 healthy controls (HC), 16 individuals with PD showed an exacerbated slowing when target and distracting stimuli corresponded to conflicting responses. No group differences occurred when targets and distractors corresponded to the same response. Furthermore, the slowing induced by the distractors was reduced in both groups, but more so in PD, when execution of a response opposite the target response (i.e. incompatible response) was required. Moreover, among individuals with PD, the magnitude of the interference produced by the distractors was related to clinical ratings of bradykinesia. These findings are consistent with the hypothesis that basal ganglia dysfunction due to Parkinson's disease disrupts processes that resolve response conflict.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2004.10.008DOI Listing

Publication Analysis

Top Keywords

conflicting responses
16
response
13
parkinson's disease
12
basal ganglia
12
response time
8
ganglia dysfunction
8
disease disrupts
8
greater response
8
response interference
8
target response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!