The anti-MUC1 antibody, CTM01, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to solid tumors of epithelial origin that express this antigen. Earlier calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This produced a "carbohydrate conjugate" capable of releasing active drug by hydrolysis in the lysosomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This gives an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the only likely site of drug release from the conjugate. As previously shown for the carbohydrate conjugate, this amide conjugate of CTM01 produces complete regressions of xenograft tumors at doses of 300 microg/kg (calicheamicin equivalents) given three times. This indicates that hydrolytic drug release is not necessary for potent, selective cytotoxicity for calicheamicin conjugates of CTM01. Although the unconjugated calicheamicins are in general less active in cells expressing the multidrug resistance phenotype, both in vitro and in vivo results of studies reported here suggest that the efficacy of the calicheamicins toward such tumors is unexpectedly enhanced by antibody conjugation, especially for the "amide conjugate". These hydrolytically stable conjugates are also active toward cisplatin-resistant ovarian carcinoma cells as well. Such studies indicate that the calicheamicin amide conjugate of CTM01 may have potential for the treatment of MUC1-positive solid tumors, including some types of resistant tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc049795fDOI Listing

Publication Analysis

Top Keywords

solid tumors
12
calicheamicin conjugates
12
"amide conjugate"
8
drug release
8
amide conjugate
8
conjugate ctm01
8
calicheamicin
7
tumors
6
conjugate
5
conjugates
5

Similar Publications

Purpose: We aimed to evaluate the impact of COVID-19 on breast cancer care in terms of the stage at presentation, treatment delays, and follow-up in a tertiary care center in Lebanon.

Materials And Methods: This retrospective study compared patients with breast cancer who presented to a tertiary care center in Lebanon before (September 2019-December 2019) and during (September 2020-December 2020) the COVID-19 pandemic. We extracted data from the electronic medical records of patients with breast cancer who had their initial presentation, were under treatment, or were on follow-up during our period of interest.

View Article and Find Full Text PDF

Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.

View Article and Find Full Text PDF

Introduction: Increasing emphasis has been placed on measurement of quality of life (QOL) as a central criterion for assessment of success of any medical treatment. The aim of our study was to assess the nutritional and quality of life of patient-reported outcomes among patients who have undergone laser resection of tongue cancer.

Materials And Methods: A cross-sectional study was undertaken of patients treated with KTP laser resection of T1/T2 tongue squamous cell carcinoma (SCC) between 2011-2019.

View Article and Find Full Text PDF

Germline genetic alterations and their associated cancer predisposition syndromes (CPS) are an important cause of pediatric cancer. Early recognition is of great importance for targeted surveillance, early detection, and prompt (personalized) therapeutic interventions. This review provides an overview of non-central nervous system solid pediatric tumor types, in relation to their associated CPS, with an emphasis on their histology.

View Article and Find Full Text PDF

A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)(esc)]ClO with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)(esc)]ClO with the Hammett constants of the substituents in 2,2'-bipy ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!