On the significance of the time constants of magnetic field sensitivity in animals.

Bioelectromagnetics

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, Hawaii, USA.

Published: April 2005

A variety of organisms is known to have the ability to transduce and respond to relatively weak magnetic fields, including the earth's field. Though biogenic magnetite has been identified as the transducer in a number of cases with regards to geomagnetic field sensing, the mechanism underlying neurophysiological responses in human studies is not understood. Here we note that the time constants involved in this latter type of field sensitivity are much longer than those in organisms that make use of the earth's magnetic field for navigation. The purpose of this brief communication is to suggest that the time constants associated with magnetic field sensitivity may be a useful way to distinguish field sensitivity due to magnetite based receptors from sensitivity that may depend on direct (or downstream) biochemical processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.20102DOI Listing

Publication Analysis

Top Keywords

field sensitivity
16
time constants
12
magnetic field
12
field
7
sensitivity
5
significance time
4
magnetic
4
constants magnetic
4
sensitivity animals
4
animals variety
4

Similar Publications

The efficient readout of the relevant information is pivotal for quantum simulation experiments. Often only single observables are accessed by performing standard projective measurements. In this work, we implement an atomic beam splitter by controlled outcoupling that enables a generalized measurement scheme.

View Article and Find Full Text PDF

Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.

View Article and Find Full Text PDF

Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.

View Article and Find Full Text PDF

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!