Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation.

Dev Dyn

Embryology Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.

Published: June 2005

SoxE genes (Sox8, Sox9, and Sox10) are early response genes to neural crest induction. Although the early role of Sox9 has been examined in chick and frog, later roles in neural crest migration and differentiation remain largely unexplored. We first examined which SoxE genes were expressed in trunk neural crest cells and then investigated their function using in ovo electroporation. The results of this analysis reveal that Sox10 is present in migrating neural crest cells, whereas other SoxE genes are only expressed transiently after induction. Ectopic expression of Sox10 in the neural tube at trunk level induced expression of HNK-1 in neuroepithelial cells followed by extensive emigration from all levels of the dorsoventral neuraxis, including the floor plate. Sox10-expressing cells failed to express neuronal, Schwann, or melanocyte markers up to 6 days posttransfection (E8), suggesting these cells were maintained in an undifferentiated state. Overexpression of Sox8 or Sox9 had similar but not identical effects on neuroepithelial cells. These results show that high levels of Sox10, Sox9, or Sox8 expression in the neural tube are capable of inducing a migratory neural crest-like phenotype even in the absence of dorsal signals and can maintain these cells in an undifferentiated state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20341DOI Listing

Publication Analysis

Top Keywords

neural crest
16
neural tube
12
soxe genes
12
neural
9
neural crest-like
8
cells
8
sox8 sox9
8
genes expressed
8
crest cells
8
neuroepithelial cells
8

Similar Publications

Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system.

Life Med

October 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China.

The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages.

View Article and Find Full Text PDF

Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Background: The most prevalent extracranial solid tumor in childhood is neuroblastoma (NB), which arises from undifferentiated neural crest cells. However, the prognosis of this condition remains unfavorable, and the underlying mechanisms of its origin are still elusive. Therefore, this study aimed to investigate the specific mechanism underlying NEAT1-1 in NB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!