The noncollagenous hexamer (NC1) domain of type IV collagen from Engelbreth-Holm-Swarm (EHS) sarcoma matrix was subjected to electrophoretic, amino-terminal amino acid sequence, and immunochemical analysis to determine which of the five known kinds of alpha(IV) chains are present. Electrophoretic analysis, whether by one-dimensional or two-dimensional electrophoresis, showed that nonlathyritic and lathyritic hexamer gave nearly identical patterns. Amino-terminal amino acid sequence analysis of hexamer subunits, transblotted from two-dimensional gels, revealed that the hexamer subunits were derived exclusively from the alpha 1 and alpha 2 chains. Western blots of hexamer subunits confirmed the sequence results, as the subunits. identified as alpha 1(IV) and alpha 2(IV) NC1 domains reacted with antibodies directed specifically against those subunits. Conversely, no reactivity of NC1 hexamer subunits was seen with Goodpasture serum, or with antibodies directed specifically against the alpha 3, alpha 4, and alpha 5 NC1 domains, confirming the lack of alpha 3, alpha 4, and alpha 5 chains. These results revealed that the type IV collagen component of the EHS sarcoma matrix is comprised exclusively of alpha 1 and alpha 2 chains. Its relative homogeneity simplifies, but restricts, interpretation of studies that employ it as a model type IV collagen because the studies would be based only on alpha 1 and alpha 2 chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03008209209006998 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFPlant Dis
January 2025
The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;
In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
University of Ottawa, Ottawa, Canada.
We evaluated enterocyte damage (IFABP), microbial translocation (sCD14), and inflammatory responses (TNF-α, IL-6, CRP) in 16 older adults (66-78 years) during 8 hours rest in conditions simulating homes maintained at 22°C (control), the 26°C indoor temperature upper limit proposed by health agencies, and homes without air-conditioning during heatwaves (31°C, 36°C). Relative to 22°C, IFABP was elevated ~181 pg/mL after exposure to 31°C (P=0.07), and by ~378 pg/mL (P<0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.
Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!