Mutations in Cu/Zn superoxide dismutase (encoded by SOD1), one of the causes of familial amyotrophic lateral sclerosis (ALS), lead to progressive death of motoneurons through a gain-of-function mechanism. RNA interference (RNAi) mediated by viral vectors allows for long-term reduction in gene expression and represents an attractive therapeutic approach for genetic diseases characterized by acquired toxic properties. We report that in SOD1(G93A) transgenic mice, a model for familial ALS, intraspinal injection of a lentiviral vector that produces RNAi-mediated silencing of SOD1 substantially retards both the onset and the progression rate of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm1207DOI Listing

Publication Analysis

Top Keywords

silencing sod1
8
rna interference
8
onset progression
8
lentiviral-mediated silencing
4
sod1 rna
4
interference retards
4
retards disease
4
disease onset
4
progression mouse
4
mouse model
4

Similar Publications

Lipid nanoparticles and transcranial focused ultrasound enhance the delivery of SOD1 antisense oligonucleotides to the murine brain for ALS therapy.

J Control Release

December 2024

School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia. Electronic address:

Article Synopsis
  • ALS is a severe neurodegenerative disease characterized by the buildup of misfolded proteins in motor neurons, prompting researchers to find ways to reduce this burden for potential treatment.
  • Antisense oligonucleotides (ASOs) have been identified as a promising option to target proteins like SOD1 that cause mutations, but their delivery to the central nervous system is challenging due to the blood-brain barrier.
  • The study demonstrates that using transcranial focused ultrasound (FUS) along with calcium phosphate lipid nanoparticles significantly enhances the delivery of a SOD1 ASO into the brain of mice, leading to reduced SOD1 levels and improved motor neuron survival without damaging brain tissue.
View Article and Find Full Text PDF

Unlabelled: Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells.

View Article and Find Full Text PDF

Antisense oligonucleotides, which are used to silence target genes, are gaining attention as a novel drug discovery modality for proteinopathies. However, while clinical trials for neurodegenerative diseases like amyotrophic lateral sclerosis have been conducted in recent years, the results have not always been favorable. The results from a Phase III trial of the antisense oligonucleotide, that is, tofersen, which targets SOD1 mRNA, showed decreased levels of cerebrospinal fluid SOD1 and plasma neurofilament light chain but no improvements in primary clinical endpoint.

View Article and Find Full Text PDF

Impact of Exogenous dsRNA on miRNA Composition in .

Plants (Basel)

August 2024

Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.

The application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase ()-encoding dsRNA to the rosette leaves of induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II () dsRNA had a minimal effect.

View Article and Find Full Text PDF

Role of hypoxia-inducible-factor-1α (HIF-1α) in ferroptosis of adipose tissue during ketosis.

J Dairy Sci

December 2024

College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319 China. Electronic address:

Postpartum cows experience lipolysis in adipose tissue due to negative energy balance, and accumulation of free fatty acids leads to metabolic stress in adipose tissue. Ferroptosis is a type of cell death triggered by excessive buildup of iron-dependent lipid peroxides and is involved in the occurrence and development of various metabolic diseases in nonruminants. However, whether ferroptosis occurs in the adipose tissue of ketotic cows and the regulatory mechanisms behind ferroptosis are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!