Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Vitamin D is required for normal bone growth and mineralization. We sought to determine whether vitamin D deficiency at birth is associated with bone mineral content (BMC) of Canadian infants.
Methods: We measured plasma 25-hydroxyvitamin D [25(OH)D] as an indicator of vitamin D status in 50 healthy mothers and their newborn term infants. In the infants, anthropometry and lumbar, femur and whole-body BMC were measured within 15 days of delivery. Mothers completed a 24-hour recall and 3-day food and supplement record. We categorized the vitamin D status of mothers and infants as deficient or adequate and then compared infant bone mass in these groups using nonpaired t tests. Maternal and infant variables known to be related to bone mass were tested for their relation to BMC using backward stepwise regression analysis.
Results: Twenty-three (46%) of the mothers and 18 (36%) of the infants had a plasma 25(OH)D concentration consistent with deficiency. Infants who were vitamin D deficient were larger at birth and follow-up. Absolute lumbar spine, femur and whole-body BMC were not different between infants with adequate vitamin D and those who were deficient, despite larger body size in the latter group. In the regression analysis, higher whole-body BMC was associated with greater gestational age and weight at birth as well as higher infant plasma 25(OH)D.
Conclusion: A high rate of vitamin D deficiency was observed among women and their newborn infants. Among infants, vitamin D deficiency was associated with greater weight and length but lower bone mass relative to body weight. Whether a return to normal vitamin D status, achieved through supplements or fortified infant formula, can reset the trajectory for acquisition of BMC requires investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC552889 | PMC |
http://dx.doi.org/10.1503/cmaj.1040508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!