The synaptonemal complex (SC) is intimately involved in the process of meiotic recombination in most organisms, but its exact role remains enigmatic. One reason for this uncertainty is that the overall structure of the SC is evolutionarily conserved, but many SC proteins are not. Two putative SC proteins have been identified in Drosophila: C(3)G and C(2)M. Mutations in either gene cause defects in SC structure and meiotic recombination. Although neither gene is well conserved at the amino acid level, the predicted secondary structure of C(3)G is similar to that of transversefilament proteins, and C(2)M is a distantly related member of the alpha-kleisin family that includes Rec8, a meiosis-specific cohesin protein. Here, we use immunogold labeling of SCs in Drosophila ovaries to localize C(3)G and C(2)M at the EM level. We show that both C(3)G and C(2)M are components of the SC, that the orientation of C(3)G within the SC is similar to other transverse-filament proteins, and that the N terminus of C(2)M is located in the central region adjacent to the lateral elements (LEs). Based on our data and the known phenotypes of C(2)M and C(3)G mutants, we propose a model of SC structure in which C(2)M links C(3)G to the LEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555515PMC
http://dx.doi.org/10.1073/pnas.0500172102DOI Listing

Publication Analysis

Top Keywords

c3g c2m
12
c3g
8
central region
8
synaptonemal complex
8
meiotic recombination
8
c2m
7
juxtaposition c2m
4
c2m transverse
4
transverse filament
4
filament protein
4

Similar Publications

Background: The synaptonemal complex (SC) is a highly conserved meiotic structure that functions to pair homologs and facilitate meiotic recombination in most eukaryotes. Five Drosophila SC proteins have been identified and localized within the complex: C(3)G, C(2)M, CONA, ORD, and the newly identified Corolla. The SC is required for meiotic recombination in Drosophila and absence of these proteins leads to reduced crossing over and chromosomal nondisjunction.

View Article and Find Full Text PDF

Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females.

PLoS Genet

November 2006

Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America.

Using an antibody against the phosphorylated form of His2Av (gamma-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to gamma-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is intimately involved in the process of meiotic recombination in most organisms, but its exact role remains enigmatic. One reason for this uncertainty is that the overall structure of the SC is evolutionarily conserved, but many SC proteins are not. Two putative SC proteins have been identified in Drosophila: C(3)G and C(2)M.

View Article and Find Full Text PDF

The Synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila.

Curr Biol

February 2003

Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.

Background: The synaptonemal complex (SC) is a proteinaceous structure that forms between homologously paired meiotic chromosomes. Previous studies have suggested that the SC is required for meiotic crossing over in Drosophila. However, only one component of this structure, C(3)G, has been identified in Drosophila.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!