A genome-wide case-control association study done in our laboratory has identified a single nucleotide polymorphism located in RAD21 as being significantly associated with breast cancer susceptibility. RAD21 is believed to function in sister chromatid alignment as part of the cohesin complex and also in double-strand break (DSB) repair. Following our initial finding, expression studies revealed a 1.25- to 2.5-fold increased expression of this gene in several human breast cancer cell lines as compared with normal breast tissue. To determine whether suppression of RAD21 expression influences cellular proliferation, RNA interference technology was used in breast cancer cell lines MCF-7 and T-47D. Proliferation of cells treated with RAD21-specific small inhibitory RNA (siRNA) was significantly reduced as compared with mock-transfected cells and cells transfected with a control siRNA (Lamin A/C). This inhibition of proliferation correlated with a significant reduction in the expression of RAD21 mRNA and with an increased level of apoptosis. Moreover, MCF-7 cell sensitivity to two DNA-damaging chemotherapeutic agents, etoposide and bleomycin, was increased after inhibition of RAD21 expression with a dose reduction factor 50 (DRF50) of 1.42 and 3.71, respectively. At the highest concentrations of etoposide and bleomycin administered, cells transfected with a single siRNA duplex targeted against RAD21 showed 57% and 60% survival as compared with control cells, respectively. Based on these findings, we conclude that RAD21 is a novel target for developing cancer therapeutics that can potentially enhance the antitumor activity of chemotherapeutic agents acting via induction of DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-04-0241DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
etoposide bleomycin
12
suppression rad21
8
human breast
8
cancer cell
8
cell lines
8
rad21 expression
8
cells transfected
8
chemotherapeutic agents
8
rad21
7

Similar Publications

Background: One-stage direct-to-implant (DTI) breast reconstruction is increasingly popular with the use of prepectoral reconstruction leading to increased demand for structural scaffolds. It is vital to determine if differences in safety profiles exist among scaffolds.

Methods: We performed a retrospective cohort study of consecutive patients in our breast cancer center undergoing DTI reconstruction.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Learning Objectives: After studying this article, the participant should be able to: (1) Understand the unique differences between mastopexy in aesthetic and reconstructive breast surgery. (2) Describe the approach to performing mastopexy with autoaugmentation or after explantation. (3) Have insight into the approach and decision-making process for performing mastopexy with nipple-sparing mastectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!