The role of the movement protein (MP) and nuclear shuttle protein (NSP) in the pathogenicity of Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was studied. Both genes were expressed in Nicotiana benthamiana, Nicotiana tabacum, and Lycopersicon esculentum plants with the Potato virus X (PVX) expression vector or by stable transformation of gene constructs under the control of the 35S promoter in N. tabacum. No phenotypic changes were observed in any of the three species when the MP was expressed from the PVX vector or constitutively expressed in transgenic plants. Expression of the ToLCNDV NSP from the PVX vector in N. benthamiana resulted in leaf curling that is typical of the disease symptoms caused by ToLCNDV in this species. Expression of NSP from PVX in N. tabacum and L. esculentum resulted in a hypersensitive response (HR), demonstrating that the ToLCVDV NSP is a target of host defense responses in these hosts. The NSP, when expressed as a transgene under the control of the 35S promoter, resulted in necrotic lesions in expanded leaves that initiated from a point and then spread across the leaf. The necrotic response was systemic in all the transgenic plants. Deletion of 100 amino acids from the C terminus did not compromise the HR response, suggesting that this region has no role in HR. Deletion of 60 or 100 amino acids from the N terminus of NSP abolished the HR response, suggesting that these sequences are required for the HR response. These findings demonstrate that the ToLCNDV NSP is a pathogenicity determinant as well as a target of host defense responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061533PMC
http://dx.doi.org/10.1128/JVI.79.7.4434-4439.2005DOI Listing

Publication Analysis

Top Keywords

nuclear shuttle
8
shuttle protein
8
tomato leaf
8
leaf curl
8
curl delhi
8
delhi virus
8
pathogenicity determinant
8
nsp pathogenicity
8
control 35s
8
35s promoter
8

Similar Publications

PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters.

View Article and Find Full Text PDF

Modulating Optogenetic YAP In Vitro and In Vivo.

Methods Mol Biol

December 2024

Mechanobiology Institute, National University of Singapore, Singapore, Singapore.

YAP is a central regulator of the Hippo-YAP signaling axis, an evolutionarily conserved pathway that modulates organ growth and regeneration. Dysregulation of YAP signaling leads to uncontrolled proliferation, promoting epithelial-to-mesenchymal transition and invasion in cancer metastasis. Exogenous manipulation of YAP activity at the second-to-minute timescale is an important step in studying the signaling pathway.

View Article and Find Full Text PDF

Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy (Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy-immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for patients with cancer.

View Article and Find Full Text PDF

Examining the potential involvement of NONO in TDP-43 proteinopathy in Drosophila.

Eur J Neurosci

January 2025

Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.

The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions.

View Article and Find Full Text PDF

The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!