The evolving technology of computer autofabrication makes it possible to produce physical models for complex biological molecules and assemblies. Augmented reality has recently developed as a computer interface technology that enables the mixing of real-world objects and computer-generated graphics. We report an application that demonstrates the use of autofabricated tangible models and augmented reality for research and communication in molecular biology. We have extended our molecular modeling environment, PMV, to support the fabrication of a wide variety of physical molecular models, and have adapted an augmented reality system to allow virtual 3D representations to be overlaid onto the tangible molecular models. Users can easily change the overlaid information, switching between different representations of the molecule, displays of molecular properties, or dynamic information. The physical models provide a powerful, intuitive interface for manipulating the computer models, streamlining the interface between human intent, the physical model, and the computational activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2005.01.009DOI Listing

Publication Analysis

Top Keywords

augmented reality
12
molecular biology
8
physical models
8
molecular models
8
molecular
6
models
6
tangible interfaces
4
interfaces structural
4
structural molecular
4
biology evolving
4

Similar Publications

Background: Simulation-based learning (SBL) and augmented reality (AR) /virtual reality (VR) are increasingly adapted and investigated globally to aid traditional teaching methods of clinical skills in several fields of clinical dentistry. This cross-sectional study was, therefore, aimed to assess the availability of such technology to Prosthodontics postgraduate trainees in Pakistan, as well as their introspective views regarding the effectiveness of adapting to simulation-based learning methods.

Method: Total population sampling yielded a sample of 200 participants.

View Article and Find Full Text PDF

Preoperative surgical planning MRI for fibroids: What the surgeon needs to know and what to report.

J Med Imaging Radiat Oncol

December 2024

St John of God Subiaco, Perth, Western Australia, Australia.

Uterine leiomyomata, commonly known as fibroids, are prevalent benign tumours affecting a significant percentage of women of reproductive age. Although many patients remain asymptomatic, a substantial proportion experience severe symptoms, including abnormal uterine bleeding and adverse reproductive outcomes. Surgical intervention often becomes necessary for patients with symptomatic fibroids, despite advancements in medical therapies.

View Article and Find Full Text PDF

GaN-based micro-light-emitting diodes (Micro-LEDs) are regarded as promising light sources for near-eye-display applications such as augmented reality/virtual reality (AR/VR) displays due to their high resolution, high brightness, and low power consumption. However, the application of Micro-LEDs in high-pixel-per-inch (PPI) displays is constrained by the drop in efficiency caused by sidewall defects in small-sized devices. In this study, a process method involving NH plasma pretreatment to reduce sidewall defects is proposed and investigated for enhancing the external quantum efficiency (EQE) of small-sized devices.

View Article and Find Full Text PDF

Mobilization in Neurocritical Care: Challenges and Opportunities.

Curr Neurol Neurosci Rep

December 2024

Department of Neurology, Hospital of The University of Pennsylvania and Penn Presbyterian Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Purpose Of Review: Mobilization in the Neurological Intensive Care Unit (NICU) significantly improves outcomes and functional recovery while preventing immobility-related complications. The heterogeneity of neurologic conditions necessitates tailored, interdisciplinary mobilization strategies. This article reviews recent research on enhancing the feasibility and effectiveness of mobilization interventions in NICU settings.

View Article and Find Full Text PDF

Despite the benefits of minimally invasive surgery, interventions such as laparoscopic liver surgery present unique challenges, like the significant anatomical differences between preoperative images and intraoperative scenes due to pneumoperitoneum, patient pose, and organ manipulation by surgical instruments. To address these challenges, a method for intraoperative three-dimensional reconstruction of the surgical scene, including vessels and tumors, without altering the surgical workflow, is proposed. The technique combines neural radiance field reconstructions from tracked laparoscopic videos with ultrasound three-dimensional compounding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!