AU-rich elements (AREs) in the 3' untranslated region (UTR) of unstable mRNAs dictate their degradation. An RNAi-based screen performed in Drosophila S2 cells has revealed that Dicer1, Argonaute1 (Ago1) and Ago2, components involved in microRNA (miRNA) processing and function, are required for the rapid decay of mRNA containing AREs of tumor necrosis factor-alpha. The requirement for Dicer in the instability of ARE-containing mRNA (ARE-RNA) was confirmed in HeLa cells. We further observed that miR16, a human miRNA containing an UAAAUAUU sequence that is complementary to the ARE sequence, is required for ARE-RNA turnover. The role of miR16 in ARE-RNA decay is sequence-specific and requires the ARE binding protein tristetraprolin (TTP). TTP does not directly bind to miR16 but interacts through association with Ago/eiF2C family members to complex with miR16 and assists in the targeting of ARE. miRNA targeting of ARE, therefore, appears to be an essential step in ARE-mediated mRNA degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2004.12.038DOI Listing

Publication Analysis

Top Keywords

involvement microrna
4
microrna au-rich
4
au-rich element-mediated
4
mrna
4
element-mediated mrna
4
mrna instability
4
instability au-rich
4
au-rich elements
4
elements ares
4
ares untranslated
4

Similar Publications

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation of the synovial joints, leading to cartilage and bone destruction. This study aimed to evaluate the diagnostic utility of specific microRNAs (miRNAs) as potential biomarkers for RA. The study was conducted on 60 patients with RA disease along with 20 control participants.

View Article and Find Full Text PDF

Dynamic responses during early development of the sea urchin Strongylocentrotus intermedius to CO-driven ocean acidification: A microRNA-mRNA integrated analysis.

Mar Pollut Bull

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China. Electronic address:

To explore the dynamic molecular responses to CO-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pH = 7.99 ± 0.01) or acidified conditions (ΔpH = -0.

View Article and Find Full Text PDF

Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.

View Article and Find Full Text PDF

Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!