NIR spectra of tobacco leaves were measured in the range of 12000 to 4000 cm(-1) using a Bruker MPA FT-NIR spectrometer. PLS calibration models were developed and optimized for rapid quantitative analysis of nicotine alkaloids, total sugar and total nitrogen contents in tobacco leaves. It was found that the prediction errors of the same component were significantly different when different spectral regions were used for PLS modeling, and the best spectral range is also different for each component. The study demonstrated that wavelength range selection is one of the important keys to optimizing the NIR calibration model. In this study it was found that the optimized calibration ranges for nicotine alkaloids, total sugar and total nitrogen are 9500-4231.2 cm(-1), 7502.1-4246.7 cm(-1) and 7502.1-4597.7 cm(-1), respectively. The Root Mean Square Error of Cross Validation (RMSECV) of the three calibration models are 0.081 5, 0.808 and 0.056, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tobacco leaves
12
calibration models
8
nicotine alkaloids
8
alkaloids total
8
total sugar
8
sugar total
8
total nitrogen
8
[determination chemical
4
chemical components
4
components tobacco
4

Similar Publications

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Visible and Near-infrared hyperspectral imaging (VNIR-HSI) combined with machine learning has shown its effectiveness in various detection applications. Specifically, the quality of cigar tobacco leaves undergoes subtle changes due to environmental differences during the air-curing phase. This study aims to evaluate the feasibility of deep learning methods in overcoming data limitations to develop a VNIR-HSI prediction model for the quality of cigar tobacco leaves at different air-curing levels.

View Article and Find Full Text PDF

To investigate the structural and functional similarities of microbial communities in burnt-sweetness alcoholized tobacco as a function of distance from the equator and their effects on tobacco quality, we sampled alcoholized tobacco from Chenzhou, Hunan Province, China and from Brazil and Zimbabwe, which are also burnt-sweetness-type tobacco producing regions, and performed high-throughput sequencing of tobacco bacterial and fungal communities along with an analysis of the main chemical constituents of the tobacco to analyze differences in the quality of the tobacco and similarities in the structure of the microbial communities. The total nitrogen, nicotine and starch contents of Chenzhou tobacco were greater than those of Brazilian and Zimbabwean tobacco, and the total sugar and reducing sugar contents of the Brazilian and Zimbabwean tobacco were greater than those of the Chenzhou tobacco (P < 0.05).

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant-pathogen interactions. However, the function of CBM50 in has yet to be fully studied. In this study, we identified seven CBM50 genes from the genome through complete sequence analysis and functional annotation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!