A new method was proposed to determine trace copper and zinc in vegetable oils by derivative flame atomic absorption spectrometry combined with flow-injection technique. The flaw that sampling is large and matrix interference was serious in conventional Flame Atomic Absorption Spectrometry (FAAS) was overcome by flow-injection sampling technique. The sensitivity and signal selectivity were enhanced when derivative technique was used in flame atomic absorption spectrometry. The results of determinations of copper and zinc in vegetable oils were satisfactory by derivative flame atomic absorption spectrometry combined with flow-injection, which were not done by conventional FAAS or flow-injection FAAS. The sensitivities were 0.004 0 and 0.001 2 microg x mL(-1) for copper and zinc, respectively, and the relative standard deviation was 1.1% -5.1%.

Download full-text PDF

Source

Publication Analysis

Top Keywords

flame atomic
20
atomic absorption
20
absorption spectrometry
20
copper zinc
16
zinc vegetable
12
vegetable oils
12
derivative flame
12
spectrometry combined
12
combined flow-injection
12
trace copper
8

Similar Publications

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats.

View Article and Find Full Text PDF

Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics.

Int J Biol Macromol

January 2025

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.

The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.

View Article and Find Full Text PDF

This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.

View Article and Find Full Text PDF

Desired Color Diversity of Carbon Fiber with Excellent Environmental Super-Durability and Remarkable Flame Retardancy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.

Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!