Metal shadow casting techniques for transmission electron microscopic examination was used to determine the morphological characteristics of Mycobacterium leprae in untreated and treated patients. This technique is used to visualize bacterial surface structures by thermal evaporation of platinum alloys under moderate vacuum. This method gives a high contrast image at relatively low resolution and is useful for correlating micro-morphology quantitatively to early therapeutic effects of anti-leprosy drugs. Using these techniques in untreated cases, the surface structures of M. leprae were uniformly filled with relatively homogenous protoplasm surrounded by a cell wall. Most of the bacilli had thick cell walls with prominent banded and fibrous structures on the surface of the cell body. The cell wall was not detached in any of the solid bacilli in untreated cases. The bacilli varied in size and some of them were swollen in their mid-portion. Some bacilli were very short and completely filled with cytoplasm; therefore, these short bacilli were counted as solid bacilli in electron microscopic morphological index (EM-MI) determination. During treatment, mainly the cytoplasms of the bacilli were affected, and degeneration was observed. Ultrastructurally, the cytoplasm was shrunken and detached from the cell wall indicating mild degeneration. After moderate degeneration, the cytoplasm appeared fragmented. In advanced degeneration, all structures except the cell walls collapsed completely and no fibrous or band structures were visible on the surfaces of the cell walls. Therefore, these bacilli were counted as non-solid bacilli for EM-MI determination. This study shows that transmission electron shadowing gives more accurate counts than standard light microscopy of intact M. leprae bacilli in patient specimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10520290400018021 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFCell Surf
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain.
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFTropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFMutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!