Purpose: To assess the vulnerability of retinal photoreceptors in the BALB/cJ, C57BL/6J, and C57BL/6-c2J (c2J) mouse strains to hypoxic and hyperoxic stress.

Methods: Mice were raised in dim cyclic light. Pups aged postnatal day 7 (P7) were exposed to hypoxia (11-12% oxygen) for periods up to 23 days. Adult mice were exposed to either hypoxia (12% oxygen) or to hyperoxia (75% oxygen) for up to 2 weeks. Using the TUNEL (terminal dUTP-mediated nick end labeling) technique retinas were examined for cell death.

Results: In juvenile mice, hypoxia induced a robust increase in photoreceptor death in the C57BL/6J strain and a weaker increase in the C57BL/6-c2J strains. In the adult, hypoxia was associated with a small reduction in photoreceptor death in the C57BL/6-c2J strains. Hyperoxia caused substantial photoreceptor death in both the C57BL/6-c2J and C57BL/6J strains. The BALB/cJ strain was more resistant to oxygen stress than the C57BL strains.

Conclusions: The difference in oxygen vulnerability between C57BL/6J and BALB/c strains may provide a useful starting point for the analysis of genetic regulation of this vulnerability. The resistance of the C57BL/6-c2J substrains to hypoxia may reflect their degenerative status.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02713680490522416DOI Listing

Publication Analysis

Top Keywords

photoreceptor death
12
c57bl/6-c2j c57bl/6j
8
mouse strains
8
oxygen stress
8
exposed hypoxia
8
c57bl/6-c2j strains
8
death c57bl/6-c2j
8
oxygen
7
c57bl/6-c2j
6
strains
6

Similar Publications

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina.

View Article and Find Full Text PDF

: Age-related macular degeneration (AMD) is the leading cause of blindness, affecting millions worldwide. Its pathogenesis involves the death of the retinal pigment epithelium (RPE), followed by photoreceptor degeneration. Although AMD is multifactorial, various genetic markers are strongly associated with the disease and may serve as biomarkers for evaluating treatment efficacy.

View Article and Find Full Text PDF

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!