Development of the long-term culture models of haematopoietic stem cells (HSCs) is one of the important tasks in modern biotechnology. It has been suggested that stromal presence is important for haematopoiesis in vitro and in vivo, but the question remains: whether diffusible factors produced by stromal cells are sufficient for the regeneration of primitive and definitive haematopoietic cells, or direct cell-to-cell contacts of the cultured material with underlying stromal base would be required. During present studies, influence of various feeder layers and feeder layer conditioned media on proliferative, differentiative and clonogenic activity of human AC133+ derived from human umbilical cord blood was investigated. Cell extracts for feeder layers were prepared from 4-6 weeks old human embryos and co-cultured feeder cells. Effects of the conditioned media were also determined. Culture and feeder layer media were additionally supplemented with commonly implemented factors such as GM-CSF, IL-3 and LIF. Estimation of morpho-functional properties of AC133+ cultivated suspension cultures was performed in subculture experiments using semisolid agar culture conditions. Multipotential CFU-MIX (CFU-GEMM) and unipotential progenitor cells CFU-GM, BFU-E and CFU-E were observed and analyzed. Our data suggest that haematopoiesis can be sustained for prolonged cultivation periods in the presence of feeder layer cells or conditioned media supported culture models. Prolonged support of primitive haematopoietic cells and their clonogenic capacity and functional characteristics in feeder layer positive cultures, indicates that diffusible factors are sufficient for haematopoiesis and suggests that direct cell-to-cell contacts may not be exclusively required for successful long-term in vitro haematopoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellbi.2004.11.016DOI Listing

Publication Analysis

Top Keywords

feeder layer
16
culture models
12
conditioned media
12
cells
8
progenitor cells
8
diffusible factors
8
haematopoietic cells
8
direct cell-to-cell
8
cell-to-cell contacts
8
feeder layers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!