Two new thorium chalcophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy: Cs4Th2P6S18 (I); Rb7Th2P6Se21 (II). Compound I crystallizes as colorless blocks in the triclinic space group P1 (No. 2) with a = 12.303(4) A, b = 12.471(4) A, c = 12.541(4) A, alpha = 114.607(8) degrees, beta = 102.547(6) degrees, gamma = 99.889(7) degrees, and Z = 2. The structure consists of (Th2P6S18)(4-) layers separated by layers of cesium cations and only contains the (P2S6)(4-) building block. Compound II crystallizes as red blocks in the triclinic space group P1 (No. 2) with a = 11.531(3) A, b = 12.359(4) A, c = 16.161(5) A, alpha = 87.289(6) degrees, beta = 75.903(6) degrees, gamma = 88.041(6) degrees, and Z = 2. The structure consists of linear chains of (Th2P6Se21)(7-) separated by rubidium cations. Compound II contains both the (PSe4)(3-) and (P2Se6)(4-) building blocks. Both structures may be derived from two known rare earth structures where a rare earth site is replaced by an alkali or actinide metal to form these novel structures. Optical band gap measurements show that compound I has a band gap of 2.8 eV and compound II has a band gap of 2.0 eV. Solid-state Raman spectroscopy of compound I shows the vibrations expected for the (P2S6)(4-) unit. Raman spectroscopy of compound II shows the vibrations expected for both (PSe4)(3-) and (P2Se6)(4-) units. Our work shows the remarkable diversity of the actinide chalcophosphate system and demonstrates the phase space is still ripe to discover new structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic049101eDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
band gap
12
thorium chalcophosphates
8
cs4th2p6s18 rb7th2p6se21
8
compound crystallizes
8
blocks triclinic
8
triclinic space
8
space group
8
degrees beta
8
degrees gamma
8

Similar Publications

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!