The structure of [Cu(aq)]2+ has been investigated by using full multiple-scattering theoretical (MXAN) analysis of the copper K-edge X-ray absorption (XAS) spectrum and density functional theory (DFT) to test both ideal Td and square-planar four-coordinate, five-coordinate square-pyramidal, and six-coordinate octahedral [Cu(aq)]2+ models. The best fit was an elongated five-coordinate square pyramid with four Cu-O(eq) bonds (2 x 1.98 +/- 0.03 A and 2 x 1.95 +/- 0.03 A) and a long Cu-O(ax) bond (2.35 +/- 0.05 A). The four equatorial ligands were D2d-distorted from the mean equatorial plane by +/-(17 +/- 4) degrees, so that the overall symmetry of [Cu(H2O)5]2+ is C2v. The four-coordinate MXAN fit was nearly as good, but the water ligands (4 x 1.96 +/- 0.02 A) migrated +/-(13 +/- 4) degrees from the mean equatorial plane, making the [Cu(H2O)4]2+ model again D2d-distorted. Spectroscopically calibrated DFT calculations were carried out on the C2v elongate square-pyramidal and D2d-distorted four-coordinate MXAN copper models, providing comparative electronic structures of the experimentally observed geometries. These calculations showed 0.85e spin on Cu(II) and 0.03e electron spin on each of the four equatorial water oxygens. All covalent bonding was restricted to the equatorial plane. In the square-pyramidal model, the electrostatic Cu-O(ax) bond was worth only 96.8 kJ mol(-1), compared to 304.6 kJ mol(-1) for each Cu-O(eq) bond. Both MXAN and DFT showed the potential well of the axial bond to be broad and flat, allowing large low-energy excursions. The irregular geometry and D2d-distorted equatorial ligand set sustained by unconstrained [Cu(H2O)5]2+ warrants caution in drawing conclusions regarding structural preferences from small molecule crystal structures and raises questions about the site-structural basis of the rack-induced bonding hypothesis of blue copper proteins. Further, previously neglected protein folding thermodynamic consequences of the rack-bonding hypothesis indicate an experimental disconfirmation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0400639DOI Listing

Publication Analysis

Top Keywords

equatorial plane
12
structure [cuaq]2+
8
rack-induced bonding
8
blue copper
8
+/- 003
8
cu-oax bond
8
d2d-distorted equatorial
8
+/- degrees
8
four-coordinate mxan
8
+/-
6

Similar Publications

Recent advances in embryology have shown that the sister blastomeres of two-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two relevant but conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte (meridional cleavage); and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary - up to an equatorial orientation - depending on the topology of fertilization.

View Article and Find Full Text PDF

Air-stable single-molecule magnets (SMMs) can be obtained by confining Dy ion in a coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for ), -O- (for ), and -NMe- (for ).

View Article and Find Full Text PDF

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

Turbulence in the tropical stratosphere, equatorial Kelvin waves, and the quasi-biennial oscillation.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, École Normale Supérieure- Paris Sciences et Lettres Université, École Polytechnique- Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris 91128, France.

The tropical stratosphere is the gateway to the global stratosphere and a commonly proposed location for solar geoengineering. The dynamics of this remote and difficult to observe region are poorly understood, particularly at turbulent length scales. Existing observational estimates of turbulence frequency and strength vary widely.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines factors influencing the failure of left superior pulmonary vein (LSPV) isolation during cryoballoon (CB) procedure, even when complete occlusion is achieved.
  • Researchers analyzed 300 patients undergoing ablation, identifying two groups based on their LSPV isolation results: those needing additional freezing (Group A) and those only needing complete occlusion (Group B).
  • Key findings show that Group A had larger LSPV diameters, higher left atrial volumes, and different freezing conditions, suggesting the importance of balloon positioning for effective isolation in challenging cases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!