Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rhubarb is one of the most widely used Chinese medicinal herbs in China. Fast and accurate identification of official and unofficial rhubarb samples is most critical for quality control of Chinese medicine production. In the present paper near-infrared reflectance spectrometry (NIRS) and artificial neural network (ANN) were combined to develop classification models for identifying 52 official and unofficial rhubarb samples. The measured spectra were compressed by wavelet transformation (WT) and then the ANN classification models were trained with the reduced-variables spectral data. The rate of correct classification was over 96%. The effects of neurons in hidden layer and the momentum were also discussed. Owing to its fast and nondestructive properties, NIRS is a promising approach to identifying Chinese medicinal herbs.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!