A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes. | LitMetric

Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes.

Angew Chem Int Ed Engl

Institut de Chimie, UMR 6509: CNRS-Université de Rennes 1, Organométalliques et Catalyse, Rennes Cedex, France.

Published: April 2005

Transformations of enynes in the presence of transition-metal catalysts have played an important role in the preparation of a variety of cyclic compounds. Recent developments in the activation of triple carbon-carbon bonds by electrophilic metal centers have provided a new entry to the selective synthesis of cyclopropane derivatives from enynes. The mechanisms of these reactions involve catalytic species with both ionic and cyclopropylcarbenoid character. This type of activation will undoubtedly be further developed for application to other unsaturated hydrocarbons and inspire new catalytic cascade reaction sequences. This Minireview discusses the recent developments in electrophilic activation of enynes and shows that simple catalysts such as [Ru(3)(CO)(12)], PtCl(2), and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200462568DOI Listing

Publication Analysis

Top Keywords

electrophilic activation
8
activation cycloisomerization
4
enynes
4
cycloisomerization enynes
4
enynes route
4
route functional
4
functional cyclopropanes
4
cyclopropanes transformations
4
transformations enynes
4
enynes presence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!