Objective: Atherosclerotic blood vessels overexpress connective tissue growth factor (CTGF) mRNA, but the role of CTGF in atherosclerosis remains controversial. To assess the hypothesis that CTGF is involved in atherosclerotic plaque progression, we investigated CTGF protein expression and distribution in the different types of plaque morphology.
Methods And Results: Serial cross-sections of 45 human carotid plaques were immunohistochemically analyzed for the presence of CTGF protein, neovascularization (von Willebrand factor), macrophages (CD68), and T cells (CD3). The lesions were categorized according to American Heart Association (AHA) classification as fibrous (type IV and V) or complicated plaques (type VI). The levels of CTGF were significantly higher in complicated compared with fibrous plaques (P=0.002). CTGF accumulated particularly in the rupture-prone plaque shoulder and in the areas of neovascularization or infiltration with inflammatory cells. Macrophage-like cells stained positive for CTGF protein in plaques. Subsequent in vitro studies showed that although monocyte-derived macrophages do not produce CTGF on stimulation with transforming growth factor-beta, lipopolysaccharide, or thrombin, they take it up from culture medium. Furthermore, CTGF induces mononuclear cell chemotaxis in a dose-dependent manner.
Conclusions: CTGF protein is significantly increased in complicated compared with fibrous plaques and may enhance monocyte migration into atherosclerotic lesions, thus contributing to atherogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000162173.27682.7b | DOI Listing |
Food Sci Nutr
January 2025
Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia.
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Int J Mol Sci
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
Patients with estrogen receptor-positive breast cancer undergoing continuous adjuvant hormone therapy often experience delayed recurrence with tamoxifen use, potentially causing adverse effects. However, the lack of biomarkers hampers patient selection for extended endocrine therapy. This study aimed to elucidate the molecular mechanisms underlying delayed recurrence and identify biomarkers.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Ophthalmology, Sapporo Medical University School of Medicine, S-1 W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!