A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-intensity rocket noise: nonlinear propagation, atmospheric absorption, and characterization. | LitMetric

High-intensity rocket noise: nonlinear propagation, atmospheric absorption, and characterization.

J Acoust Soc Am

Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, Alabama 35487-0280, USA.

Published: February 2005

Analyses of rocket noise data measured at far-field locations during the launch of a large rocket and a smaller rocket are presented. Weak shocks are present in all of the data sets. In order to characterize these shocks, those segments of the waveforms where the acoustic pressure is increasing are isolated and the rate of increase in pressure plotted versus magnitude of pressure rise. The plots follow a trend consistent with random noise at low values of pressure rise, then transition to the pressure-squared dependence expected for weak shocks at higher pressure rise values. Power spectral densities of the noise during the period of maximum overall sound-pressure levels display high- and low-frequency spectral slopes that are close to those predicted for shock-dominated noise. It is concluded that shocks must be included in propagation models if high frequency levels are to be estimated as a function of distance from the source. Initial shock thicknesses will have to be characterized experimentally and will require instrumentation with a bandwidth well in excess of 20 kHz. Reflection-free data are essential if meaningful assessments of the statistical properties of the noise are to be made.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.1841711DOI Listing

Publication Analysis

Top Keywords

pressure rise
12
rocket noise
8
weak shocks
8
noise
6
pressure
5
high-intensity rocket
4
noise nonlinear
4
nonlinear propagation
4
propagation atmospheric
4
atmospheric absorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!