A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. | LitMetric

Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production.

Biotechnol Bioeng

Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018TV Amsterdam, The Netherlands.

Published: April 2005

Although glucose is an inexpensive substrate widely used as a carbon source in Escherichia coli recombinant fermentation technology, 10-30% of the carbon supply is wasted by excreting acetate. In addition to the loss of carbon source, the excretion of a weak acid may result in increased energetic demands and hence a decreased yield. Because glucose can enter the cell via several transport systems, isogenic strains defective in one or two of these transport systems were constructed. The effects of changes in the glucose uptake capacity on the in vivo flux distribution to a desired end product (beta-galactosidase) and to acetate were studied. The lack of one of the components (IICB(Glc) protein) of the glucose-phosphoenolpyruvate phosphotransferase system (Glc-PTS) reduced the growth rate significantly. The maintenance of a low-copy plasmid in this strain resulted in further arrest of the growth rate. However, beta-galactosidase production had no effect on growth rate. This strain directed more carbon into biomass and carbon dioxide, and less into acetate. Beta-galactosidase was produced in amounts not significantly different from the wild-type strain from half the amount of glucose. An explanation for the experimental results is given, making use of published results on metabolic regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.20387DOI Listing

Publication Analysis

Top Keywords

growth rate
16
glucose uptake
8
escherichia coli
8
carbon source
8
transport systems
8
rate
5
carbon
5
reducing glucose
4
uptake rate
4
rate escherichia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!