Patients with sporadic Hirschsprung disease (HSCR) show increased allele sharing at markers in the 5' region of the RET locus, indicating the presence of a common ancestral RET mutation. In a previous study, we found a haplotype of six SNPs that was transmitted to 55.6% of our patients, whereas it was present in only 16.2% of the controls we used. Among the patients with that haplotype, 90.8% had it on both chromosomes, which led to a much higher risk of developing HSCR than when the haplotype occurred heterozygously. To more precisely define the HSCR-associated region and to identify candidate disease-associated variant(s), we sequenced the shared common haplotype region from 10 kb upstream of the RET gene through intron 1 and exon 2 (in total, 33 kb) in a patient homozygous for the common risk haplotype and in a control individual homozygous for the most common nonrisk haplotype. A comparison of these sequences revealed 86 sequence differences. Of these 86 variations, 8 proved to be in regions highly conserved among different vertebrates and within putative transcription factor binding sites. We therefore considered these as candidate disease-associated variants. Subsequent genotyping of these eight variants revealed a strong disease association for six of the eight markers. These six markers also showed the largest distortions in allele transmission. Interspecies comparison showed that only one of the six variations was located in a region also conserved in a nonmammalian species, making it the most likely candidate HSCR-associated variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199373 | PMC |
http://dx.doi.org/10.1086/429589 | DOI Listing |
Nat Genet
January 2025
Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
Gene expression quantitative trait loci are widely used to infer relationships between genes and central nervous system (CNS) phenotypes; however, the effect of brain disease on these inferences is unclear. Using 2,348,438 single-nuclei profiles from 391 disease-case and control brains, we report 13,939 genes whose expression correlated with genetic variation, of which 16.7-40.
View Article and Find Full Text PDFPediatr Transplant
February 2025
Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Pediatric solid organ transplant (SOT) recipients with splenic dysfunction are at increased risk for infections, and tailored guidance on the management of asplenia/hyposplenism among SOT recipients is often lacking. The purpose of this article is to provide practice recommendations via a frequently asked questions (FAQs) format that focuses on three main domains: the identification of asplenia/hyposplenism among SOT recipients/candidates, prophylactic strategies for mitigating the risk of invasive disease associated with splenic dysfunction in the context of transplantation, and the provision of appropriate patient counseling on the risks associated with asplenia/hyposplenism. Answers to the FAQs are based on international expert opinion informed by practices for managing splenic dysfunction and associated data in other populations with asplenia.
View Article and Find Full Text PDFAs the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.
Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.
Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.
Nephrology (Carlton)
January 2025
Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia.
Aim: Autosomal recessive primary hyperoxalurias (PH) are genetic disorders characterised by elevated oxalate production. Mutations in genes involved in glycoxylate metabolism are the underlying cause of PH. Type 1 PH (PH1) results in malfunctioning of alanine-glyoxylate aminotransferase enzymes of liver due to a change in the genetic sequence of alanine-glyoxylate aminotransferase (AGXT) gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!