Neuronal lipofuscin characteristics in the superior temporal gyrus from 21 patients with Alzheimer's disease (AD) and from 18 age-matched non-diseased subjects were compared with previously reported findings from the superior frontal gyrus. A discriminant function analysis of lipofuscin characteristics in the superior temporal gyrus did not provide a significant predictive level for cases whose diagnoses were correctly classified (56.4%, P=0.63). In contrast, AD-related decrease in the number of smaller lipofuscin regions in the neurons of the frontal gyrus was confirmed, and the same analysis of lipofuscin characteristics in this region gave a significant predictive level for membership of the AD group of 86.6% (P<0.001). The findings indicate that changes in neuronal lipofuscin related to AD, which may reflect an increased rate of lipofuscin formation, show differences between neocortical regions. This study provides additional information on the distribution of neuropathological characteristics in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-005-0993-9 | DOI Listing |
Sci Prog
January 2025
Department of Otolaryngology, Fengdu County People's Hospital, Fengdu County, Chongqing, China.
Objective: This study aims to analyze anatomical parameters of the transmission route of sigmoid sinus tinnitus (SST) to explore its mechanism and speculate on possible responsible anatomical abnormalities.
Methods: Clinical data were retrospectively collected from SST and sigmoid sinus wall dehiscence (SSWD) patients suggested by temporal bone high resolution computed tomography (HRCT), with and without tinnitus, at the First Affiliated Hospital of Chongqing Medical University from January 2015 to August 2022. Patients were divided into SSWD tinnitus ( = 61), and non-tinnitus ( = 60) groups based on HRCT features.
Front Neurosci
January 2025
Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
Purpose: Tinnitus is considered a neurological disorder affecting both auditory and nonauditory networks. This study aimed to investigate the structural brain covariance network in tinnitus patients and analyze its altered topological properties.
Materials: Fifty three primary tinnitus patients and 67 age- and sex-matched healthy controls (HCs) were included.
Front Neurosci
January 2025
Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Introduction: Amyotrophic lateral sclerosis (ALS) is a rare, devastating neurodegenerative disease that affects upper and lower motor neurons, resulting in muscle atrophy, spasticity, hyperreflexia, and paralysis. Inflammation plays an important role in the development of ALS, and associated with rapid disease progression. Current observational studies indicate the thinning of cortical thickness in patients with ALS is associated with rapid disease progression and cognitive changes.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Radiology, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, China.
The occurrence and persistence of tinnitus result from the interaction of multiple neural networks. This study aims to explore the alterations in brain network topology associated with the transition of tinnitus from recent-onset to chronic. Twenty-eight patients with chronic tinnitus, 28 patients with recent-onset tinnitus and 28 sex- and age-matched healthy controls (HC) were enrolled in this study.
View Article and Find Full Text PDFEye Contact Lens
January 2025
Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkiye.
Objectives: To evaluate scleral thickness of patients with keratoconus by anterior segment optical coherence tomography (AS-OCT).
Materials And Methods: Fifty-two eyes of 42 patients with keratoconus (group 1) and 42 right eyes of 42 healthy individuals (group 2) were included. Scleral thickness measurements were taken with AS-OCT 6, 4, and 2 mm behind the scleral spur in four gaze positions: superior, inferior, temporal, and nasal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!