Interleukin-1beta (IL-1beta) induces cyclooxygenase-2 (Cox-2) expression in many of its cellular targets resulting in production and release of prostaglandins. Although IL-1beta-induced Cox-2 expression most likely requires activation of nuclear transcription factor kappa B (NFkappaB) pathway, this has never been formally demonstrated in vivo. We tested this using a specific inhibitor of NFkappaB activation, the NEMO binding domain (NBD) peptide, that has been shown previously to be effective in various in vivo models of acute inflammation. Incubation of rat glioma cells with the NBD peptide blocked IL-1beta-induced NFkappaB nuclear translocation. Furthermore, after injection of a biotinylated version of the NBD peptide into the lateral ventricle of the brain, we found that it readily diffused to its potential cellular targets in vivo. To test the effects of the peptide on NFkappaB activation and Cox-2 expression in the brain, we injected it intracerebroventricularly (36 microg/rat) into rats before intraperitoneal injection of IL-1beta (60 microg/kg). Treatment with NBD peptide completely abolished IL-1beta-induced NFkappaB activation and Cox-2 synthesis in microvasculature. In contrast, the peptide had no effect on constitutive neuronal Cox-2. These findings strongly support the hypothesis that IL-1beta-induced NFkappaB activation plays a major role in transmission of immune signals from the periphery to the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jcbfm.9600106 | DOI Listing |
J Orthop Surg Res
January 2025
Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.
View Article and Find Full Text PDFEMBO Rep
January 2025
Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.
View Article and Find Full Text PDFCell Rep
December 2024
School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:
Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK. Electronic address:
Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!