A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha. | LitMetric

Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha.

Microbiology (Reading)

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.

Published: March 2005

The heat-shock response is conserved amongst practically all organisms. Almost invariably, the massive heat-shock protein (Hsp) synthesis that it induces is subsequently down-regulated, making this a transient, not a sustained, stress response. This study investigated whether the heat-shock response displays any unusual features in the methylotrophic yeast Hansenula polymorpha, since this organism exhibits the highest growth temperature (49-50 degrees C) identified to date for any yeast and grows at 47 degrees C without either thermal death or detriment to final biomass yield. Maximal levels of Hsp induction were observed with a temperature upshift of H. polymorpha from 30 degrees C to 47-49 degrees C. This heat shock induces a prolonged growth arrest, heat-shock protein synthesis being down-regulated long before growth resumes at such high temperatures. A 30 degrees C to 49 degrees C heat shock also induced thermotolerance, although H. polymorpha cells in balanced growth at 49 degrees C were intrinsically thermotolerant. Unexpectedly, the normal transience of the H. polymorpha heat-shock response was suppressed completely by imposing the additional stress of hypoxia at the time of the 30 degrees C to 49 degrees C temperature upshift. Hypoxia abolishing the transience of the heat-shock response appears to operate at the level of Hsp gene transcription, since the heat-induced Hsp70 mRNA was transiently induced in a heat-shocked normoxic culture but displayed sustained induction in a culture deprived of oxygen at the time of temperature upshift.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.27272-0DOI Listing

Publication Analysis

Top Keywords

heat-shock response
20
temperature upshift
12
degrees
9
transience heat-shock
8
methylotrophic yeast
8
yeast hansenula
8
hansenula polymorpha
8
polymorpha heat-shock
8
heat-shock protein
8
degrees heat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!