CT of the ear in Pendred syndrome.

Radiology

Departments of Radiology and Internal Medicine, Western Galilee Hospital, Nahariya 22100, Israel.

Published: May 2005

Purpose: To prospectively determine the structural anomalies of the inner ear by using thin-section computed tomography (CT) in an extended family with Pendred syndrome.

Materials And Methods: Ethics committee approved the study, and informed consent was obtained from every patient or from parents of patients under legal age. Twelve patients (three females and nine males aged 7-47 years) with Pendred syndrome (all from the same ethnic isolate and with the same mutation in the PDS gene) were evaluated for inner-ear malformation at thin-section CT. Both ears were evaluated. Presence or absence of interscalar septum between upper and middle turns of the cochlea was evaluated, and vestibule and vestibular aqueduct were examined for enlargement. Modiolus was determined to be present or absent (modiolar deficiency). CT scans were evaluated in consensus by two radiologists (M.G., J.M.G.).

Results: All patients had inner ear malformation on both sides. Modiolus was absent and vestibule was enlarged on both sides in all 12 patients. Interscalar septum was absent in 18 (75%) of 24 ears. In eight patients, interscalar septum was absent in both ears, whereas in two patients, it was absent on only one side. Aqueduct was enlarged in 20 (80%) of 24 ears. In nine patients, both ears had enlarged aqueducts, while in two patients, only one side was abnormal.

Conclusion: Inner ear malformation is an invariable finding in Pendred syndrome. Modiolus deficiency and vestibular enlargement were the most consistent anomalies in this population with Pendred syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2352031583DOI Listing

Publication Analysis

Top Keywords

pendred syndrome
16
inner ear
12
interscalar septum
12
ears patients
12
patients
8
ear malformation
8
patients interscalar
8
septum absent
8
ears
5
absent
5

Similar Publications

Clinical Phenotypic Characterization of the SLC26A4 Mutation in Pendred Syndrome/Nonsyndromic Enlarged Vestibular Aqueduct.

Laryngoscope

February 2025

Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, PLA Medical School, Beijing, China.

Article Synopsis
  • The study focuses on the mutations in the SLC26A4 gene and the clinical features of Pendred syndrome and nonsyndromic enlarged vestibular aqueduct (PS/NSEVA) in a Chinese patient population.
  • Researchers analyzed hearing test results from 406 patients, finding significant differences in hearing loss among those with various types of SLC26A4 mutations, but not related to sex or the exact mutation type.
  • Conclusions highlight that SLC26A4 mutations, age, and the presence of specific ear malformations are important for understanding hearing loss, while mutation type and patient demographics had little impact on auditory outcomes.
View Article and Find Full Text PDF

Foxi1 is a master regulator of ionocytes (ISCs / INCs) across species and organs. Two subtypes of ISCs exist, and both α- and β-ISCs regulate pH- and ion-homeostasis in epithelia. Gain and loss of FOXI1 function are associated with human diseases, including Pendred syndrome, male infertility, renal acidosis and cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Pendred syndrome (PS) is identified by issues like goiter, abnormal thyroid tests, and hearing loss, which can also occur alongside nonsyndromic hearing loss due to different underlying causes.
  • A case study of a girl showed that she had hearing loss, vestibular aqueduct enlargement, and two genetic variants linked to PS, as well as a positive thyroid peroxidase (TPO) antibody.
  • Despite normal thyroid function tests and mild enlargement of the thyroid gland, the girl is suspected to have both Pendred syndrome and Hashimoto's thyroiditis, indicating a need for careful monitoring due to the increased risk of hypothyroidism from these conditions.
View Article and Find Full Text PDF

SLC26A4 encodes pendrin, a crucial anion exchanger essential for maintaining hearing function. Mutations in SLC26A4, including the prevalent c.919-2 A > G splice-site mutation among East Asian individuals, can disrupt inner ear electrolyte balance, leading to syndromic and non-syndromic hearing loss, such as Pendred syndrome and DFNB4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!