AI Article Synopsis

  • - Researchers conducted a 5-year study on the effects of long-term low-level phosphorus (P) addition to Everglades marshes, adding P at different concentrations to observe ecological changes.
  • - They found that while changes in the ecosystem were more rapid with higher P levels, all treatments eventually showed similar outcomes, including increased plant biomass and loss of native periphyton mats.
  • - The study highlighted that the marshes have little capacity to handle added phosphorus without changing ecosystems, and that biological responses develop gradually, with phosphorus mainly moving through biota rather than the water.

Article Abstract

Few studies have examined long-term ecological effects of sustained low-level nutrient enhancement on wetland biota. To determine sustained effects of phosphorus (P) addition on Everglades marshes we added P at low levels (5, 15, and 30 microg L(-1) above ambient) for 5 yr to triplicate 100-m flow-through channels in pristine marsh. A cascade of ecological responses occurred in similar sequence among treatments. Although the rate of change increased with dosing level, treatments converged to similar enriched endpoints, characterized most notably by a doubling of plant biomass and elimination of native, calcareous periphyton mats. The full sequence of biological changes occurred without an increase in water total P concentration, which remained near ambient levels until Year 5. This study indicates that Everglades marshes have a near-zero assimilative capacity for P without a state change, that ecosystem responses to enrichment accumulate over time, and that downstream P transport mainly occurs through biota rather than the water column.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2005.0717DOI Listing

Publication Analysis

Top Keywords

ecological effects
8
everglades marshes
8
cascading ecological
4
effects low-level
4
low-level phosphorus
4
phosphorus enrichment
4
enrichment florida
4
florida everglades
4
everglades studies
4
studies examined
4

Similar Publications

Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.

View Article and Find Full Text PDF

Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).

View Article and Find Full Text PDF

Reservoir-operation optimisation is a crucial aspect of water-resource development and sustainable water process management. This study addresses bi-objective optimisation problems by proposing a novel crossover evolution operator, known as the hybrid simulated binary and improved arithmetic crossover (SBAX) operator, based on the simulated binary cross (SBX) and arithmetic crossover operators, and applies it to the Non-dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm to improve the algorithm. In particular, the arithmetic crossover operator can obtain an optimal solution more precisely within the solution space, whereas the SBX operator can explore a broader range of potential high-quality solutions.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Strongly coordinating mediator enables single-step resource recovery from heavy metal-organic complexes in wastewater.

Nat Commun

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.

Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!