The pathogenic agent in Drosophila models of 'polyglutamine' diseases.

Hum Mol Genet

ARC Special Research Centre for the Molecular Genetics of Development, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide 5005, South Australia.

Published: April 2005

A substantial body of evidence supports the identity of polyglutamine as the pathogenic agent in a variety of human neurodegenerative disorders where the mutation is an expanded CAG repeat. However, in apparent contradiction to this, there are several human neurodegenerative diseases (some of which are clinically indistinguishable from the 'polyglutamine' diseases) that are due to expanded repeats that cannot encode polyglutamine. As polyglutamine cannot be the pathogenic agent in these diseases, either the different disorders have distinct pathogenic pathways or some other common agent is toxic in all of the expanded repeat diseases. Recently, evidence has been presented in support of RNA as the pathogenic agent in Fragile X-associated tremor/ataxia syndrome (FXTAS), caused by expanded CGG repeats at the FRAXA locus. A Drosophila model of FXTAS, in which 90 copies of the CGG repeat are expressed in an untranslated region of RNA, exhibits both neurodegeneration and similar molecular pathology to the 'polyglutamine' diseases. We have, therefore, explored the identity of the pathogenic agent, and specifically the role of RNA, in a Drosophila model of the polyglutamine diseases by the expression of various repeat constructs. These include expanded CAA and CAG repeats and an untranslated CAG repeat. Our data support the identity of polyglutamine as the pathogenic agent in the Drosophila models of expanded CAG repeat neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddi096DOI Listing

Publication Analysis

Top Keywords

pathogenic agent
24
'polyglutamine' diseases
12
polyglutamine pathogenic
12
cag repeat
12
agent drosophila
8
drosophila models
8
diseases
8
identity polyglutamine
8
human neurodegenerative
8
expanded cag
8

Similar Publications

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.

View Article and Find Full Text PDF

Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.

View Article and Find Full Text PDF

Marine fish farming served as a sustainable alternative to capture fisheries. However, it faced challenges such as disease management, water quality maintenance, and minimizing environmental impacts. Among these challenges, fungal infections are particularly concerning.

View Article and Find Full Text PDF

Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions.

Microb Pathog

January 2025

Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.

Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!