Variation between the sexes in cardiac function have been established. The extent to which sex hormones are responsible for these differences is unclear. The current study was designed to determine whether testosterone acts acutely to enhance contractility of cultured rat ventricular myocytes. Following a 24-h treatment with testosterone (1 microM), isolated rat ventricular myocytes display a 21% increase (P < 0.01) in peak shortening and an 18% decrease (P < 0.02) in time to peak shortening. In accordance with this change, testosterone treatment produced an 18% decline (P < 0.002) in the time to relengthening when compared to vehicle-treated controls. These results provide the first evidence that short-term androgen exposure acts directly to stimulate contractility of isolated rat ventricular myocytes and thus may play a role in regulating cardiac performance in males and thereby contribute to sex differences in cardiac function.

Download full-text PDF

Source
http://dx.doi.org/10.1530/eje.1.01845DOI Listing

Publication Analysis

Top Keywords

rat ventricular
16
ventricular myocytes
16
isolated rat
12
cardiac function
8
peak shortening
8
acute actions
4
testosterone
4
actions testosterone
4
testosterone contractile
4
contractile function
4

Similar Publications

Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.

View Article and Find Full Text PDF

KW-2449 is a novel multitargeted kinase inhibitor that has been reported to alleviate chronic inflammation and altered immunity during the treatment of autoimmune diseases. The aim of the study was to investigate the effect of KW-2449 on sepsis-induced cardiomyopathy (SIC). A rat model of moderate SIC was induced using the cecal ligation and puncture (CLP) method.

View Article and Find Full Text PDF

Strength training improves heart function, collagen and strength in rats with heart failure.

J Physiol Sci

January 2025

Experimental Physiology and Biochemistry Laboratory. Physical Education and Sport Center, Federal University of Espirito Santo, Vitoria, Brazil. Electronic address:

Background/objectives: Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.

View Article and Find Full Text PDF

Background And Purpose: Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the Ca/calmodulin-dependent protein kinase family. We previously revealed that A484954, a selective eEF2K inhibitor, caused hypotensive and diuretic effects via the production of nitric oxide (NO) in spontaneously hypertensive rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are hypertensive because of obesity and type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!