A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Photosystem II inhibiting herbicides on mangroves--preliminary toxicology trials. | LitMetric

Effects of Photosystem II inhibiting herbicides on mangroves--preliminary toxicology trials.

Mar Pollut Bull

Centre for Marine Studies, The University of Queensland, St Lucia, Queensland 4072, Australia.

Published: July 2005

Mangroves are sensitive to the root application of Photosystem II inhibiting herbicides and Avicennia marina is more sensitive than other mangroves tested. Seedlings of four mangrove species, including two salt-excreting species (A. marina and Aegiceras corniculatum) and two salt-excluding species (Rhizophora stylosa and Ceriops australis) were treated with a range of concentrations of the herbicides diuron, ametryn and atrazine. Assessment of responses required the separation of seedlings into two groups: those that had only their roots exposed to the herbicides through the water (A. marina and R. stylosa) and those that had both roots and leaves exposed to herbicides through the water (A. corniculatum and C. australis). Salt-excreting species in each group were more susceptible to all herbicide treatments than salt-excluding species, indicating that root physiology was a major factor in the uptake of toxic pollutants in mangroves. Submergence of leaves appeared to facilitate herbicide uptake, having serious implications for seedling recruitment in the field. Each herbicide was ranked by its toxicity to mangrove seedlings from most damaging to least effective, with diuron>ametryn>atrazine. The relative sensitivity of A. marina found in these pot trials was consistent with the observed sensitivity of this species in the field, notably where severe dieback had specifically affected A. marina in the Mackay region, north eastern Australia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2004.10.051DOI Listing

Publication Analysis

Top Keywords

photosystem inhibiting
8
inhibiting herbicides
8
salt-excreting species
8
salt-excluding species
8
exposed herbicides
8
herbicides water
8
species
6
herbicides
5
marina
5
effects photosystem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!