Chymosin molecules in the crystal lattice have Tyr77 occluding the S1/S3 substrate binding pockets suggesting that the enzyme is self-inhibited. An analysis of this structure in conjunction with its comparison with pepsin has shown that this is most probably an intrinsic property of the enzyme. It also indicates that chymosin's substrate specificity may be dependent upon the ability of the substrate to displace the tyrosine ring from the binding pockets. This analysis also implies that active and self-inhibited forms of other aspartic proteinases can exist in solution helping to explain the results of kinetic studies of these enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-291x(92)90701-l | DOI Listing |
Front Chem
January 2025
African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.
Introduction: Treatment of type 2 diabetes (T2D) remains a significant challenge because of its multifactorial nature and complex metabolic pathways. There is growing interest in finding new therapeutic targets that could lead to safer and more effective treatment options. Takeda G protein-coupled receptor 5 (TGR5) is a promising antidiabetic target that plays a key role in metabolic regulation, especially in glucose homeostasis and energy expenditure.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The ligand-binding pocket of the androgen receptor (AR) is the targeting site of all clinically used AR antagonists. However, various drug-resistant mutations emerged in the pocket. We previously reported a new targeting site at the dimer interface of AR (dimer interface pocket) and identified a novel antagonist M17-B15 that failed in oral administration.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China. Electronic address:
Benzotriazole ultraviolet stabilizers (BUVSs) are pervasive environmental contaminants that pose significant risks to human health. This study evaluated the effects of three typical BUVSs (UV-328, UV-329, and UV-P) on human mesenchymal stem cells (hMSCs), which play crucial roles in tissue maintenance and repair. hMSCs were exposed to BUVSs across a range of concentrations, and their maintenance and differentiation capacities were assessed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2025
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!