Objective: To compare concentrations of danofloxacin, enrofloxacin, and ciprofloxacin in plasma and respiratory tissues of calves treated after challenge with Mannheimia haemolytica.

Animals: 75 calves.

Procedure: 24 hours after challenge with M. haemolytica, 72 calves with clinical signs of respiratory tract disease were randomly assigned to 1 of 12 equal treatment groups. Three nonchallenged, nontreated calves formed a control group. Challenged calves were treated with danofloxacin (6 and 8 mg/kg, SC) and enrofloxacin (8 mg/kg, SC) once. At 1, 2, 6, and 12 hours after treatment, 6 calves from each treatment group were euthanatized. Antimicrobial drug concentrations were assayed in various specimens. Peak plasma concentration (Cmax)-to-minimum inhibitory concentration (MIC; Cmax-to-MIC) ratios and the area under the concentration versus time curve over a 12-hour period-to-MIC ratios (AUC(12h)-to-MIC) were calculat-ed.

Results: Danofloxacin and enrofloxacin had MICs of 0.03 microg/mL for the M. haemolytica challenge isolate. Danofloxacin administered at doses of 6 and 8 mg/kg resulted in numerically higher geometric mean concentrations of danofloxacin in plasma and all respiratory tissues than geometric mean concentrations of enrofloxacin after treatment with enrofloxacin. Geometric mean concentrations of enrofloxacin were numerically higher than geometric mean concentrations of ciprofloxacin metabolite in plasma and almost all respiratory tissues. Danofloxacin and enrofloxacin achieved Cmax-to-MIC ratios >10 and AUC(12h)-to-MIC ratios >125 hours.

Conclusions And Clinical Relevance: When used to treat pneumonic pasteurellosis in calves, danofloxacin and enrofloxacin can be expected to deliver concentration-dependent bactericidal activity against M. haemolytica, the bacteria most commonly associated with bovine respiratory tract disease.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.2005.66.342DOI Listing

Publication Analysis

Top Keywords

danofloxacin enrofloxacin
20
geometric concentrations
16
plasma respiratory
12
respiratory tissues
12
enrofloxacin
9
danofloxacin
8
concentrations danofloxacin
8
calves treated
8
respiratory tract
8
tract disease
8

Similar Publications

Mannheimia haemolytica is one of the most common causative agents of bovine respiratory disease (BRD); however, antibiotic resistance in this species is increasing, making treatment more difficult. Integrative-conjugative elements (ICE), a subset of mobile genetic elements (MGE), encoding up to 100 genes have been reported in Mannheimia haemolytica genomes to confer multidrug resistance, including resistance to antibiotics commonly used in the treatment of BRD. However, the presence of antibiotic resistance genes (ARGs) does not always agree with phenotypic resistance.

View Article and Find Full Text PDF

Introduction: (MG) infection is a primary cause of chronic respiratory disease in poultry, threatening the economic viability of China's goose-farming industry. This study investigated the pathogenicity and drug resistance of an MG strain isolated from geese and whole-genome sequenced the strain.

Material And Methods: A strain designated MG-GD01/22 was isolated from the air-sac tissues of five geese with chronic respiratory disease on a Guangdong goose farm.

View Article and Find Full Text PDF

Subcellular tissues-specific responses of Mytilus galloprovincialis to fluoroquinolone antibiotics.

Environ Toxicol Pharmacol

October 2023

Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy. Electronic address:

The study aimed to investigate the in vitro effects of the fluoroquinolone antibiotics (FQs) Ciprofloxacin (CIP), Enrofloxacin (ENR) and Danofloxacin (DAN) on the mussel Mytilus galloprovincialis exposed to environmentally relevant concentrations. In vitro exposure was performed on subcellular fractions of the digestive gland and gills through a multi-biomarker approach, which included the assessment of cellular damage, antioxidant and biotransformation enzyme activities, neurotoxicity, and DNA single-strand breaks (DNAssb). Results showed a decrease in protein carbonyl content in the gills when exposed to all concentrations of ENR.

View Article and Find Full Text PDF

A 3D printed device covered with Zn/Co-ZIF-derived carbon allows the on-site extraction of fluoroquinolones (FQs) from wastewater, avoiding the sample transportation to the laboratory, and the subsequent elution, separation and determination using an on-line flow system based on sequential injection analysis (SIA) coupled to HPLC-FL. Several parameters that affect the extraction efficiency and desorption were optimized including the sorption phase immobilization technique on the 3D device, extraction time, pH effect, sample volume as well as the type of eluent, eluent volume, and flow rate. Under optimum conditions, detection limits of 3-9 ng L were achieved for norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin and difloxacin.

View Article and Find Full Text PDF

A recognition motif is vital in determining the specificity and sensitivity of the fluorescence polarization assay (FPA) for detecting chemical contaminants in food. Four candidates (Gyrase, GyrBA, TopIV, and QepA) were prepared for this study. The applicability of QepA was confirmed through DNA cleavage assay, inhibition effects, and mechanism investigations using molecular docking, compared to other counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!