During the last few years, HLA class I tetramers have been successfully used to demonstrate anti-vaccine CD8 CTL proliferation in cancer patients vaccinated with tumor antigens. Frequencies of CTL as low as 10(-6) among CD8 cells were observed even in patients showing tumor regression. Little is known about the role of tumor-antigen-specific CD4 T cells in the context of these anti-vaccine responses. Therefore, we developed a very sensitive approach using fluorescent class-II-peptide multimers to detect antigen-specific CD4 T cells in vaccinated cancer patients. We produced HLA-DP4 multimers loaded with the MAGE-3(243-258) peptide and used them to stain ex vivo PBL from melanoma patients injected with dendritic cells pulsed with several class I and class II tumor antigenic peptides, including the MAGE-3(243-258) peptide. The multimer(+) CD4 T cells were sorted and amplified in clonal conditions; specificity was assessed by their ability to secrete IFN-gamma upon contact with the MAGE-3 antigen. We detected frequencies of about 1x10(-6) anti-MAGE-3.DP4 cells among CD4 cells. A detailed analysis of one patient showed an anti-MAGE-3.DP4 CD4 T cell amplification of at least 3000-fold upon immunization. TCR analysis of the clones from this patient demonstrated a polyclonal response against the MAGE-3 peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200425847 | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Ophthalmology, Children's Hospital of Fudan University Xiamen Branch, Xiamen Children's Hospital, Xiamen, China.
Objective: This study systematically investigates the causal relationships between 731 immune cell phenotypes and age-related macular degeneration (AMD) using comprehensive Mendelian randomization (MR) analyses. The goal is to identify immune cell factors that contribute to or protect against AMD, thereby clarifying the immunological mechanisms underlying AMD pathophysiology and informing prevention and treatment strategies.
Methods: Univariable, bidirectional, and multivariable MR analyses were conducted to evaluate the associations between immune cells and AMD.
Clin Transl Oncol
January 2025
UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).
Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!