Myeloid differentiation factor 88 (MyD88) plays a crucial role in the signaling pathways triggered by interleukin (IL)-1 and Toll-like receptors in several steps of innate host defense. A crucial event in this signaling pathway is represented by dimerization of MyD88, which allows the recruitment of downstream kinases like IRAK-1 and IRAK-4. Herein, we have investigated the function of the Toll/IL-1 receptor (TIR) domain in MyD88 homodimerization in cell-free and in vitro experimental settings by using epta-peptides that mimic the BB-loop region of the conserved TIR domain of different proteins. By using a pull-down assay with purified glutathione S-transferase-MyD88 TIR or co-immunoprecipitation experiments, we found that epta-peptides derived from the TIR domain of MyD88 and IL-18R are the most effective in inhibiting homodimerization with either the isolated TIR or full-length MyD88. Moreover, we demonstrated that a cell permeable analog of MyD88 epta-peptide inhibits homodimerization of MyD88 TIR domains in an in vitro cell system and significantly reduces IL-1 signaling, as assayed by activation of the downstream transcription factor NF-kappaB. Our results indicate that the BB-loop in TIR domain of MyD88 is a good target for specific inhibition of MyD88-mediated signaling in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.C400613200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!