The "combi-targeting" concept seeks to design molecules to not only block tyrosine kinase (TK) activity but also to induce DNA damage. Here we design AK04, a molecule that combines the pharmacophore chlorambucil with that of STI-571 (Gleevec). The results showed that although a less potent abl TK inhibitor than STI571, AK04 was capable of significantly blocking bcr-abl phosphorylation not only in a purified abl assay but also in the bcr-abl+ K562 cells. In contrast to STI571 and like chlorambucil, it induced a dose-dependent increase in DNA damage in these cells. More importantly, AK04 was 12-32-fold more potent than chlorambucil in all bcr-abl+ cells of our cell panel. In the isogenic human megakaryocytic Mo7e and Mo7/bcr-abl cells, AK04 selectively killed the bcr-abl transfectants. Flow cytometry revealed that despite being a five-fold less potent inhibitor of bcr-abl than STI-571, it induced a significant dose-dependent increase in levels of cell death by apoptosis in KU812 cells 24 h post-treatment. Under these conditions, chlorambucil did not induce any significant level of apoptosis. These results suggest that AK04 is a nitrogen mustard with binary bcr-abl/DNA targeting effects, a property that may account for its superior potency when compared with the classical mustard chlorambucil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2004.11.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!