In pathologies due to protein misassembly, low oligomeric states of the misfolded proteins rather than large aggregates play an important biological role. In prion diseases the lethal evolution is associated with formation of PrP(Sc), a misfolded and amyloid form of the normal cellular prion protein PrP. Although several molecular mechanisms were proposed to account for the propagation of the infectious agent, the events responsible for cell death are still unclear. The correlation between PrP(C) expression level and the rate of disease evolution on one side, and the fact that PrP(Sc) deposition in brain did not strictly correlate with the apparition of clinical symptoms on the other side, suggested a potential role for diffusible oligomers in neuronal death. To get better insight into the molecular mechanisms of PrP(C) oligomerization, we studied the heat-induced oligomerization pathway of the full-length recombinant ovine PrP at acidic pH. This led to the irreversible formation of two well-identified soluble oligomers that could be recovered by size-exclusion chromatography. Both oligomers displayed higher beta-sheet content when compared to the monomer. A sequential two-step multimolecular process accounted for the rate of their formation and their ratio partition, both depending on the initial protein concentration. Small-angle X-ray scattering allowed the determination of the molecular masses for each oligomer, 12mer and 36mer, as well as their distinct oblate shapes. The two species differed in accessibility of polypeptide chain epitopes and of pepsin-sensitive bonds, in a way suggesting distinct conformations for their monomeric unit. The conversion pathway leading to these novel oligomers, displaying contrasted biochemical reactivities, might be a clue to unravel their biological roles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2005.01.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!