An inhibition assay method was developed based on the modulation in the FRET efficiency between quantum dots (QDs) and gold nanoparticles (AuNPs) in the presence of the molecules which inhibit the interactions between QD- and AuNP-conjugated biomolecules. For the functionalization, AuNPs were first stabilized by chemisorption of n-alkanethiols and then capped with the first generation polyamidoamine (G1 PAMAM) dendrimers. By employing a streptavidin-biotin couple as a model system, avidin was quantitatively analyzed as an inhibitor by sensing the change in photoluminescence (PL) quenching of SA-QDs by biotin-AuNPs. The detection limit for avidin was about 10 nM. It is anticipated that the PL quenching-based sensing system can be used for the quantitative analysis and high throughput screening of molecules which inhibit the specific biomolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0433323DOI Listing

Publication Analysis

Top Keywords

inhibition assay
8
quantum dots
8
gold nanoparticles
8
molecules inhibit
8
assay biomolecules
4
biomolecules based
4
based fluorescence
4
fluorescence resonance
4
resonance energy
4
energy transfer
4

Similar Publications

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!