During DNA replication, chromatin states have to be accurately transmitted from the parental to the daughter strands for faithful epigenetic inheritance. Chromatin remodelling factors at the replication site are thought to be involved in this process. Recent work adds ATP-dependent nucleosome remodelling factors to this category of enzymes. The WICH complex, consisting of the ISWI-type ATPase SNF2H and the Williams Syndrome Transcription Factor (WSTF), binds to replication foci using PCNA, a key factor in DNA- and chromatin replication and DNA repair, as an interaction platform. Depletion of WSTF results in decreased chromatin accessibility, which is evident already in newly replicated DNA. This leads to heterochromatin formation on a global scale and a decrease in overall transcriptional activity. Here, we propose that WICH, by keeping nucleosomes mobile, provides access to the newly replicated DNA and may thereby create a window of opportunity after DNA replication for rebinding of factors that maintain the epigenetic state, and thus prevents aberrant heterochromatin formation. Our model may provide an explanation for the long-standing observation of a delay in chromatin "maturation" on newly replicated DNA, by connecting this delay with the action of PCNA-bound WSTF-ISWI, and highlights chromatin remodeling shortly after DNA replication as a critical point for regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.4.4.1624 | DOI Listing |
Kidney Int
December 2024
Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:
RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.
View Article and Find Full Text PDFChembiochem
December 2024
Hunan University, College of Chemistry and Chemical Engineering, Yuelu, 410082, Changsha, CHINA.
Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
December 2024
Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.
View Article and Find Full Text PDFFront Immunol
December 2024
School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.
Stimulator of interferon genes (STING) is a key connector protein in interferon (IFN) signaling, crucial for IFN induction during the activation of antiviral innate immunity. In mammals, ring finger protein 5 (RNF5) functions as an E3 ubiquitin ligase, mediating STING regulation through K150 ubiquitylation to prevent excessive IFN production. However, the mechanisms underlying RNF5's regulation of STING in teleost fish remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!