Purpose: To evaluate growth factor receptor cross talk with the estrogen receptor (ER) in paired clinical breast cancer specimens and in a xenograft model before tamoxifen and at tumor progression as a possible mechanism for tamoxifen resistance.
Methods: Specimen pairs from 39 patients were tissue arrayed and stained for ER, progesterone receptor (PgR), Bcl-2, c-ErbB2 (HER-2), and phosphorylated (p) p38 mitogen-activated protein kinase (MAPK), p-ERK1/2 MAPK, and p-Akt. Xenograft MCF-7 tumors before and after tamoxifen resistance were assessed for levels of p-p38.
Results: Pretreatment, there were strong correlations between ER, PgR, and Bcl-2, and an inverse correlation between ER and HER-2. These correlations were lost in the tamoxifen- resistant tumors and replaced by strong correlations between ER and p-p38 and p-ERK. ER expression was lost in 17% of resistant tumors. Three (11%) of the 26 tumors originally negative for HER-2 became amplified and/or overexpressed at resistance. All ER-positive tumors that overexpressed HER-2 originally or at resistance expressed high levels of p-p38. In the pretreatment and tamoxifen-resistant specimens, there were strong correlations between p-p38 and p-ERK. In the tamoxifen-resistant xenograft tumors, like the clinical samples, there was a striking increase in p-p38.
Conclusion: The molecular pathways driving tumor growth can change as the tumor progresses. Crosstalk between ER, HER-2, p38, and ERK may contribute to tamoxifen resistance and may provide molecular targets to overcome this resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/JCO.2005.01.172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!